Using the ?
operator:
! WARNING: CHAT GPT CAN GIVE INCORRECT INFORMATION !
x <- seq(from = 5, to = 23, length.out = 10) # create a sequence of numbers
y <- seq(from = 0.1, to = 0.78, length.out = 10) # Create another sequence
mean(x*y) # Get the mean of the multiplication
[1] 7.406667
Objects? Operators? Functions? Arguments?
Objects:
- x
- y
Operators:
- *
- <-
Functions:
- seq()
- mean()
Arguments:
- from
- to
- lengt.out
Some of the function we reviewed:
select()
slice()
filter()
Some of the function we reviewed:
select()
to select specific columnsslice()
filter()
Some of the function we reviewed:
select()
to select specific columnsslice()
to select specific rows based on positionfilter()
Some of the function we reviewed:
select()
to select specific columnsslice()
to select specific rows based on positionfilter()
to select specific rows based on a conditionOther function we reviewed:
count()
Count rows by one or more groupsgroup_by()
aggregate the data by one or more groupssummarise()
applies functions to the grouped variablesleft_join()
join tables based on one or more index variablesInstead of the %>%
, in ggplot we connect pieces of code with +
The basic components that we need to define for a plot are the following:
municipality | location | Loc | date | year | captures | treated | lat | lon | trap_type |
---|---|---|---|---|---|---|---|---|---|
Temascaltepec | San Pedro Tenayac | Cueva el Uno | 11/06/14 | 2014 | 6 | 6 | 18.03546 | -100.2095 | 1 |
Tlatlaya | Nuevo Copaltepec | La alcantarilla | 12/05/05 | 2005 | 3 | 2 | 18.40417 | -100.2688 | 1 |
Tlatlaya | Nuevo Copaltepec | La alcantarilla | 12/05/07 | 2007 | 30 | 29 | 18.40417 | -100.2688 | 4 |
Tlatlaya | Nuevo Copaltepec | La alcantarilla | 12/03/09 | 2009 | 0 | 0 | 18.40417 | -100.2688 | 3 |
Tlatlaya | Nuevo Copaltepec | La alcantarilla | 10/08/10 | 2010 | 4 | 3 | 18.40417 | -100.2688 | 1 |
year | n |
---|---|
2005 | 167 |
2006 | 103 |
2007 | 249 |
2008 | 143 |
2009 | 125 |
Graphics in R
Vectors
Rasters
Point
Lines
Polygon
library(sf)
# Loading the spatial data from the package
MxSp <- st_read(system.file("data/MxShp.shp", package = "STNet"))
Reading layer `MxShp' from data source
`/Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/library/STNet/data/MxShp.shp'
using driver `ESRI Shapefile'
Simple feature collection with 2471 features and 6 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 1058748 ymin: 319149.1 xmax: 4082958 ymax: 2349605
Projected CRS: MEXICO_ITRF_2008_LCC
Simple feature collection with 6 features and 6 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: -100.5848 ymin: 16.88094 xmax: -98.218 ymax: 18.35471
Geodetic CRS: WGS 84
CVEGEO CVE_ENT CVE_MUN NOMGEO AREA_LCC ID
1 12067 12 067 Tlapehuala 284.696 12067
2 12043 12 043 Metlatónoc 584.023 12043
3 12081 12 081 Iliatenco 235.682 12081
4 12066 12 066 Tlapa de Comonfort 609.030 12066
5 12078 12 078 Cochoapa el Grande 638.160 12078
6 12079 12 079 José Joaquín de Herrera 131.977 12079
geometry
1 MULTIPOLYGON (((-100.3237 1...
2 MULTIPOLYGON (((-98.26956 1...
3 MULTIPOLYGON (((-98.57511 1...
4 MULTIPOLYGON (((-98.5618 17...
5 MULTIPOLYGON (((-98.28944 1...
6 MULTIPOLYGON (((-98.95271 1...
The output shows:
geometry type
: The type of shapefile (either point data, lines or polygons).dimension
Dimensions used in the data.Bounding box
: The extent of our data.CRS
: The coordinate reference system.ggplot() + # create the empty canvas
geom_stars(data = Mxst) + # add raster layer
geom_sf(data = Area, fill = NA, col = 'grey60') + # add polygon layer
geom_sf(data = capturesSp, cex = 0.3, col = 'skyblue') + # add point layer
theme_void() + # theme for the figure
scale_fill_gradient(low = 'black', high = 'red', na.value = NA) + # color for the gradient
labs(title = 'Map of the study area', fill = 'Altitude') # labels for the figure