x <- seq(from = 5, to = 23, length.out = 10) # create a sequence of numbers
y <- seq(from = 0.1, to = 0.78, length.out = 10) # Create another sequence
mean(x*y) # Get the mean of the multiplication[1] 7.406667
Objects:
- x
- y
Operators:
- *
- <-
Functions:
- seq()
- mean()
Arguments:
- from
- to
- lengt.out
select() to select specific columnsslice() to select specific rows based on positionfilter() to select specific rows based on a conditionmutate() to create new variablesOther function we reviewed:
count() Count rows by one or more groupsgroup_by() aggregate the data by one or more groupssummarise() applies functions to the grouped variablesComponents needed to define a graphic:
Types of vectors:
ggplot() + # create the empty canvas
  geom_stars(data = Mxst) + # add raster layer
  geom_sf(data = Area, fill = NA, col = 'grey60') + # add polygon layer
  geom_sf(data = capturesSp, cex = 0.3, col = 'skyblue') +
  theme_void() +
  scale_fill_gradient(low = 'black', high = 'red', na.value = NA) +
  labs(fill = 'Altitude')ggplot() + # create the empty canvas
  geom_stars(data = Mxst) + # add raster layer
  geom_sf(data = Area, fill = NA, col = 'grey60') + # add polygon layer
  geom_sf(data = capturesSp, cex = 0.3, col = 'skyblue') + # add point layer
  theme_void() +
  scale_fill_gradient(low = 'black', high = 'red', na.value = NA) +
  labs(fill = 'Altitude')ggplot() + # create the empty canvas
  geom_stars(data = Mxst) + # add raster layer
  geom_sf(data = Area, fill = NA, col = 'grey60') + # add polygon layer
  geom_sf(data = capturesSp, cex = 0.3, col = 'skyblue') + # add point layer
  theme_void() + # theme for the figure
  scale_fill_gradient(low = 'black', high = 'red', na.value = NA) +
  labs(fill = 'Altitude')ggplot() + # create the empty canvas
  geom_stars(data = Mxst) + # add raster layer
  geom_sf(data = Area, fill = NA, col = 'grey60') + # add polygon layer
  geom_sf(data = capturesSp, cex = 0.3, col = 'skyblue') + # add point layer
  theme_void() + # theme for the figure
  scale_fill_gradient(low = 'black', high = 'red', na.value = NA) + # color for the gradient
  labs(fill = 'Altitude')ggplot() + # create the empty canvas
  geom_stars(data = Mxst) + # add raster layer
  geom_sf(data = Area, fill = NA, col = 'grey60') + # add polygon layer
  geom_sf(data = capturesSp, cex = 0.3, col = 'skyblue') + # add point layer
  theme_void() + # theme for the figure
  scale_fill_gradient(low = 'black', high = 'red', na.value = NA) + # color for the gradient
  labs(title = 'Map of the study area', fill = 'Altitude') # labels for the figureIdentify individuals that are very active 
Identify individuals that are intermediate 
Nodes (vertices)
\[V = [1, 2, 3, ..., i]\]
Nodes (vertices)
\[V = [1, 2, 3, ..., i]\]
Edges (links)
\[E = [(1, 2), (1, 3), (2, 3), ..., (i,j)]\]
Network attributes
\[V = [0, 1, 1, ..., x_i]\]
# A tbl_graph: 40 nodes and 1611 edges
#
# A directed multigraph with 1 component
#
# A tibble: 40 × 1
  name 
  <chr>
1 17   
2 12   
3 14   
4 11   
5 7    
6 9    
# ℹ 34 more rows
#
# A tibble: 1,611 × 6
   from    to date    pigs.moved type_orig type_dest
  <int> <int> <chr>        <int> <chr>     <chr>    
1     1     7 8/20/15        160 finisher  sow farm 
2     1     7 8/20/15         76 finisher  sow farm 
3     1     3 9/11/15        155 finisher  nursery  
# ℹ 1,608 more rows
%>%?%N>% for nodes%E>% for edgesggraph(net, layout = 'kk') + # this is our empty canvas
  geom_edge_link(aes(width = pigs.moved)) + # Add the edges
  geom_node_point() + # Add the nodes
  scale_edge_width(range = c(0.01, 0.9)) + # we set the range for the width of the edges
  labs(title = 'Title for the plot', edge_width = 'Number of pigs moved') # labels for the figureNetwork analysis in R




From this we could conclude:
A description of the health event and its context, current state of knowledge and potential risk management options

To facilitate the search for data, eligibility criteria should be defined that take into account:

Type of outputs might include:





Risk assessment in R